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Abstract

Two spectral collocation schemes on the unit disc are presented. The first one is based on the mapping of Gordon
and Hall. Here the unit square is directly mapped onto the unit disc by means of an interpolation technique. Unlike
other Poisson solvers on the unit disc no polar coordinates are involved. Hence the usual problems with the singularity
of polar coordinates are avoided. This is also shown for more complex geometries. The second method is based on a
diameter approach where the collocation nodes are no more clustering in the center. Numerical results are presented
which demonstrate the high accuracy of our new spectral collocation schemes.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A new spectral collocation scheme for the Poisson problem on the unit disc is introduced. An efficient
Poisson solver is required in many applications. For instance, in computational fluid dynamics a splitting of
the Navier-Stokes equations leads to Poisson or ““Pseudo-Poisson’ problems for the pressure [11-13]. Most
Poisson solvers are based on finite difference or finite element methods. Here we consider spectral collo-
cation schemes.

Spectral methods [3,10,20] employ global polynomials for the discretization of elliptic boundary value
problems. They give very accurate approximations for smooth solutions with relatively few degrees of
freedom. For the collocation scheme it is essential to employ a collocation grid based on Gauss— or Gauss—
Lobatto nodes. Hence these methods are well suited for rectangular domains but for more complex ge-
ometries the distribution of collocation nodes is not clear. Since by a stretching any smooth star-shaped
domain can be simply mapped onto the unit disc we consider Poisson problems on this domain. In the
previous spectral literature the Poisson equation is transformed into polar coordinates and then solved by
means of a combined Chebyshev (or Legendre) and Fourier expansion. Here we refer to the existing papers
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in [1,4,5,16,18,19,21]. Unfortunately, this transform leads to a coordinate singularity along the axis at the
center » = 0. Hence most Poisson solvers involve additional “pole conditions™ to capture the behaviour of
the solution as » — 0. This has been discussed in detail by several authors [5,16,21]. An alternative is the use
of Gauss—Radau collocation nodes which exclude the center » = 0. Hence the singularity at the center is
avoided and no extra pole condition is required. The algebraic systems can be efficiently solved by a two-
step eigenvalue technique. For a more detailed description we refer to the paper of Chen et al. [4]. Here we
use a mapping technique introduced by Gordon and Hall [8,9] which maps a square into a quadrilateral
domain with curved boundaries. In particular, we use this mapping for the unit disc where the curved
boundaries are the arcs of the unit circle. Here we avoid the typical problems of polar coordinates where the
terms 1/r and 1/7* lead to large condition numbers for » — 0. This effect is quite strong since the collo-
cation nodes are dense near the center » = 0. We observed similar problems for the mapping of the square
onto the triangle [14,15]. For our method we observe the well known high spectral accuracy. This is
demonstrated by numerical results which are compared to the results of Chen et al. [4], Eisen et al. [5],
Huang et al. [16] and Shen [21]. Only in cases where the solution is explicitly given in r (e.g., u = *) the
treatment with polar coordinates yields better results. This is due to the fact that these schemes use ex-
pansions in r. For the other examples we obtain comparable or even better convergence. This is also
confirmed for more complex geometries where a comparison with the method of Chen et al. [4] shows that
we obtain a much higher accuracy.

In the second part of the paper we present a polar coordinate approach based on the diameter. Here the
clustering of collocation nodes near the center is also avoided. Similar results were already obtained by
Fornberg [6,7] and Torres/Coutsias [23]. Instead of the radius we employ the diameter » € [—1, 1] which
leads to a new distribution of collocation nodes. Now the nodes are only dense near the boundary of the
unit disc but not in the center. By choosing an odd number of radial nodes the center is not a collocation
point and we do not need any pole conditions. In the angular direction 6 we use for 6 > = a shift of /2N so
that an overlap of collocation nodes can be avoided. From numerical experiments we still observe the high
spectral accuracy. Clearly, the condition number is strongly improved and the effect of rounding errors is
reduced. The good performance of our approach is also shown for more complex geometries.

The paper is organized as follows. In the next section we introduce the Poisson problem and the mapping
of Gordon and Hall for the unit disc. This is followed by the spectral discretization in Section 3. Numerical
results and their discussion are presented in Section 4. In Section 5 we extend this technique to more
complex domains. Finally in Section 6 an improved spectral scheme with polar coordinates is presented.

2. The poisson problem and mapping

We consider the Poisson problem
Au = f in D, (1)

u=gonodD (2)
on the unit disc
D={(xy): ¥ +)’ <1}

Here f', g denote given functions defined on D and its boundary 0D. In order to apply spectral collocation
schemes one has to define a transformed problem on the square. Instead of introducing polar coordinates
we prefer the mapping of Gordon and Hall [3,8,9]. They found a fairly simple interpolation procedure for
mapping a square Q = (—1, 1)2 into a quadrilateral with curved boundaries. We first use this mapping
technique for mapping Q onto the disc
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D" = V2D = {(x,y): ¥*+)*<2}.

The boundary 0D* intersects with the four corners of Q. Let the four parts of 0D* be denoted by
I,i=1,...,4 where

I={xy: y=v2—-x, -1 <x<1},
Fy={(y): x=-v2-y, -1<y<l},
Is={(x,y): y=—V2—x2, -1 <x<1},
Fy={(xy): x=v2—-32 —-1<y<1}.

The corresponding sides of the square Q are denoted by I';,i = 1, ... ,4. One uses mappings 7; from I; to
I'; to construct the mapping ¥ from Q to D*. Following Gordon and Hall [3,8,9], the mapping ¥ can be
expressed in terms of the m; as follows:

P = 3 m) + (@) + 5w - ) - 5 (- )
[l = ) = 2 - 1)

The functions w;, i =1,...,4 are given by

m@=( 5w ) mO=(_sow) -l<i<i
ﬁz(ﬂ)=<_\/2n_—"2>, n4(17):<\/7>, “l<n<l.

By using these formulas the mapping can explicitly be written as

x=&V2-n, y=m/2-&

This defines the mapping of Q onto D*. Finally one obtains D by the stretching
(x,) = (6,2)/V2.

Since we are interested in the solution of the Poisson problem we have to transform the Laplace operator
into the coordinates of Q. The coordinates (x,y) of D are considered as a function of the coordinates (¢, 1)
of O, ie., x =x(&, ), y = y(& n). The partial derivatives are now transformed as follows:

xe ye 0 0 01w us
Xy W 0 0 0 U, uy
Xee Ve o X 2xeye VI e | = | e |- 3)
Xeyn  Yen XeXy  XeYy +XgVe  Veby Uyy Ugy

2 2
X Y Xy 2xyyy Yy Uy, Uy
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By inverting the above matrix and taking the sum of the third and fifth row we exactly obtain the co-
efficients of the transformed Laplace operator in (&,#) coordinates. Now we are able to apply spectral
collocation schemes.

3. Spectral collocation

On Q we employ the standard Chebyshev Gauss—Lobatto collocation nodes given by

(&) = (cos%,cos%), i,j=0,...,N.

By using the described mapping technique of Gordon and Hall we map these collocation nodes onto the
disc D. For N =24 they are plotted in Fig. 1. Clearly, they are clustering near the points (x,y) =
(+1/+/2,£1/v/2) on which the four corners of Q are mapped. A zoom of the collocation nodes near
(x,y) = (1/v/2,1/V/2) is presented in Fig. 2. The partial derivatives of x,y and u in ¢ and 5 are derived by
means of the spectral collocation operators. In the following we write the spectral derivatives in matrix
notation. First one has to introduce the transformation matrices from the space of function values to the
space of (Chebyshev) coefficients. Since we employ a Chebyshev expansion we obtain the following matrix:

T = cos <kﬂ>, i,k=0,...,N.
N

Fig. 1. Collocation nodes on the unit disc.
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Fig. 2. Zoom of collocation nodes.

_ Further we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given by
D= (di,j) c RN+1AN+1 with

d_:{ﬁ j=i+1, i+3,...,N,
1]

Ci

0 else

and
_J2 i=0,
ST else.
Now we are able to write the first and second spectral derivative matrices D1 and D2. They are explicitly
given by
Dl =7TDT"', D2=TDT "
The spectral operators can be efficiently evaluated by fast Fourier transforms (FFTs) in O(N logN)

arithmetic operations. We further introduce the identity matrix 7 € RY*"V*! By tensor product repre-
sentation

A®B = (4b,;)

i
Ly

we are now able to write the spectral derivatives in 2D. The first order partial derivatives are given by

0
~ | ® DI.

0
—~DIRI, —
a2 &1, on
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The second order derivatives are defined by

2 2 2
~PD2®I ~ D] ® D1
R ©1 ® DL,

0&an On O
The 2D spectral operators can be efficiently evaluated by FFTs in O(N?log N) arithmetic operations.
Now it is an easy task to implement the collocation scheme.

~ ] ® D2.

4. Numerical results

Due to the singularity of the above mapping (corners are mapped onto the smooth parts of the circle) a
large condition number can be expected. In Table 1, we compared the condition numbers of the spectral
Laplace operator evaluated on D respectively Q. They are numerically evaluated in the spectral norm and
are denoted by

D Y
cond;, cond5.

From the numerical results we observe that the condition number on D is about 2-3 orders of magnitude
larger than on Q. For time-dependent problems this leads to prohibitively small time steps which is typical
for such kind of singular mappings. Here we recommend implicit time schemes. However, we consider
stationary problems and are interested in the spectral accuracy of the method. For this purpose we cal-
culated the discrete L and L*-errors on D. They are denoted by E2 and EY where

EP = max{| (u—uy)(xi,,) |: ,j=0,...,N}

o =

and
s EN:(u—u ) (xi,37)
? N i,j=0 ! o

The errors are once more compared to the corresponding results on Q which are denoted by E?C,EzQ. We
consider an example [4,5,16] with a smooth solution given by

u(x,y) = cos(7y + 8x+0.7). (4)
Table 1
Condition numbers on D and Q
N cond? cond?
4 1.16 x 10! 8.16 x 10°
8 1.07 x 10° 8.92 x 10!
12 2.32 x 10* 4.25 x 10?
16 2.19 x 10° 1.32 x 10°
20 1.27 x 10° 3.19 x 103
24 5.38 x 10° 6.59 x 103
28 1.83 x 107 1.22 x 10*
32 5.30 x 107 2.07 x 10*
48 1.31 x 10° 1.05 x 10°

64 1.30 x 10'° 3.22x 10°
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From Table 2 we observe that the large condition number does not affect the high spectral accuracy. The
results on Q are only slightly better than on D. For N = 28 the precision of our machine (about 107'4) is
already achieved. Hence the singularity of the mapping has nearly no influence on the accuracy. We further
compared our method to the other schemes based on polar coordinates [4,5,16,21]. Here we have to notice
that the cited references take

N, =N, Ny=2N

for the polar coordinates (r, ). Hence they employ 2N? degrees of freedom whereas our method only
requires N2 degrees of freedom. Hence the computational costs are comparable if we here take N = 12. The

error is measured in the L>°-norm. We present numerical results (Table 3) for the above example and the
additional examples

u(x,y) = e, (5)
u(x,y) = x+y+2, (6)
u(x,y) =In(x +y+2), (7)
ulx,y) = (& + )" (8)

For the examples (4), (6) and (7) we obtain better results than the other references. For example (5) our
results are similar to the others and for more complex geometries we also observe a good performance of
our method (see Table 5). Only for example (8) we obtain much worse results. This is due to the fact that
the exact solution u = r* can explicitly be written in » and hence the polar coordinate approaches yield exact
results (up to machine precision). Clearly, for problems where the solution is an algebraic polynomial in

Table 2
Numerical results for example (4)
N ED ED EY E2
4 5.12 x 10° 1.49 x 10! 6.76 x 10° 1.79 x 10!
8 8.73x 1072 2.38 x 107! 7.02 x 1072 1.53 x 107!
12 1.73x 1073 6.97 x 1073 8.76 x 107* 2.04 x 1073
16 7.81x 1076 2.73 x 1073 3.44 x 10°° 9.37 x10°¢
20 1.44 x 1078 4.80x 1078 5.44 x 10~ 1.60 x 1078
24 1.60 x 10~ 5.45x 1071 4.12x 10712 1.28 x 10711
28 2.35x 1071 8.39 x 10713 1.28 x 1071 6.38 x 10714
32 2.10x 10713 9.37x 1071 2.00 x 10~ 7.21 x 1071
Table 3
Numerical results for examples (4)-(8)
Example Present Chen [4] Eisen [5] Huang [16] Shen [21]
cos(7x + 8y +0.7) 6.97 x 1073 3.96 x 107! 1.47 x 10° 4.11 x 107! -
ety 3.87x 1077 2.72x 1078 3.27x 107 2.61 x 1078 2.6 x 1078
Vx+y+2 3.66 x 1078 1.80 x 1073 - - -
In(x+y+2) 1.25x 1077 1.34 x 1074 - - -

=2 +)7)? 8.28x 1077 8.63 x 1015 - 330 x 10714 -
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or a trigonometric polynomial in 6 the other approaches have better approximation properties. But in
general our scheme is better or at least comparable to the methods with polar coordinates.

5. Complex geometry

Here we apply the mapping technique of Gordon and Hall to more complex geometries. We consider the
Poisson problem on domains with smooth boundaries I' which are parameterized in the arc length 0:

d(6) cos(6)

ro) = <d(0)sin(0) ), 0<0 < 2m.

Here d(0) denotes the radius in 0. The domain is normalized such that d(n/4) = 1. In order to apply the
mapping technique of Gordon and Hall we have to define the mappings =n;,i = 1,2,3,4. Here we only
consider 7;. For given &; = cos(jn/N),j =0,...,N one determines the arc length 0; by solving the equation

d(0) cos(0) = &

by a few steps (3-4 steps) of a Newton iteration. Then we obtain

&)= (a0 ) ®)

A similar technique works for the other three mappings. Since the boundary curve is already given in a
parameterized form it makes sense to define modified mappings 7; in the arc length 6. We once more

describe this approach only for 7;. First one maps the variable ¢ € [—1, 1] onto 0 € [n/4,31/4] by
0= =220

_r
3

Then for given &; we determine 0; = 0(¢;) and obtain
-y — (4(0;)cos(0))
m(S) = (d(a,-) sin(0)) ) (10)

A similar approach works on the other three parts of the boundary. By a numerical simulation we
compared both approaches. We consider boundary curves given by

d(0) =1 +sin’(k0), k=0,1,2, (11)

which are normalized such that d(n/4) = 1, i.e.,
N (T
d(H):d(é))/d(Z), k=0,1,2. (12)

For k£ = 0 we reobtain the unit disc and for £ = 1,2 the boundaries become more complex. In Figs. 3 and
4 we plotted the distribution of collocation nodes for £ = 1,2 due to the parameterized mapping (10). We
numerically calculated the discrete L?-error for the Poisson problem with the exact solutions (4) and (5).
The errors are denoted by E, for mapping (9) and E} for the parameterized mapping (10). The corre-
sponding results are presented in the Tables 4 and 5 for £ = 0,1,2. On the unit disc (k = 0) mapping (9)
yields the most accurate results. For more complex domains (k = 1, 2) the parameterized version (10) be-
comes better. This could be expected since a discretization along the arc length yields a higher order res-
olution of the boundary. Clearly, for increasing k the spectral accuracy is somewhat disturbed. For £ > 3
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Fig. 3. Collocation nodes on complex geometry (k = 1).
the collocation nodes near the four corners are mapped onto nodes outside the domain (see Fig. 5). Hence
for increasing oscillations of the boundary the present approach should not be used. But for moderate

oscillations of the boundary curve we obtained a high order method. For more complex domains we also
tested the polar coordinate approach. The mapping is given by

(;) :r<fl((g))2?r?((09))) 0<r<1, 0<0<2m. (13)

We have to transform the Laplace operator into the polar coordinates. For this purpose we introduce the
following abbreviations:

d=d0), d=4d(0), d"=d'(0), c=cos(d), s=sin(6).

The partial derivatives are now transformed as follows:

an ap a0 0 Uy Upy

ajy dy dx 0 0 Mxy (FM,~0 — 1/[())/7‘2

as;  dsx  aszy a4 dss Uyy = Li()()/l’2 » (14)
0 0 0 Agq  Ags ux/l" MV/I"

0 0 0 dsq  Ass L{y/l" uﬁ/rz
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Fig. 4. Collocation nodes on complex geometry (k = 2).
Table 4
Numerical results for example (4) with Gordon and Hall
N k=0 k=1 k=2
E» E? E, E? E, E?
8 8.73 x 1072 1.36 x 107! 2.08 x 107! 2.08 x 107! 3.25x 107! 2.35%x 107!
16 7.81x107° 9.77 x 1073 1.25x 1073 3.13x 1073 3.03x 1072 3.89 x 1073
24 1.60 x 107 8.23 x 10~ 5.10 x 1073 1.12x 1073 3.59x 1073 3.79 x 1073
32 2.10x 10713 2.99 x 10713 4.15x10°¢ 1.68 x 108 5.08 x 1074 2.77 x 1077
48 8.21 x 10713 8.35x 10713 4.16x 1078 8.21 x 10713 1.69 x 1073 6.63 x 10712
64 2.32x10°12 2.20 x 10712 5.34 x 10710 221 x10°12 9.33x 1077 2.07 x 10712
Table 5
Numerical results for example (5) with Gordon and Hall
N k=0 k=1 k=2
E> Eb E» B E £
8 8.58 x 107¢ 1.26 x 1076 9.30 x 107* 1.78 x 107* 425%x1073 1.93x 1073
16 1.71 x 107° 1.14 x 10712 3.69 x 1073 7.91 x 107° 4.66 x 10~ 3.61 x 1077
24 547 x 10713 4.84x 1071 2.65x10°¢ 4.51 x 1071 5.98 x 1073 1.33x 10710
32 8.22 x 1074 9.65x 1074 2.33x 1077 7.89 x 10714 8.63x 107¢ 8.73x 10714
48 8.11x 10713 7.65x 10713 2.42 %1077 5.80 x 10713 2.96 x 1077 1.18 x 10712
64 1.50 x 10712 1.37x 10712 3.13x 107! 1.17 x 10712 1.73x 1078 2.98 x 10712
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Fig. 5. Collocation nodes on complex geometry (k = 3).

where 4 = (a;;),i,j = 1,2,3 is given by
d*c? 2csd? d’s’
A= |dc(dc—ds) d*(? — s*) + 2dd'cs ds(d's + dc)
(dc—ds)* 2(d*—d*)sc+2dd (* —s*) (d's+de)’
and the other components are

aw=d'c—2d's —dc, ays=d"s+2dc—ds,

au =dc, agss=ds, au=dc—ds, ass=ds+dec.

By inverting the above matrix and taking the sum of the first and third row we exactly obtain the co-
efficients of the transformed Laplace operator in polar coordinates. Now we are able to apply spectral
collocation schemes. Here we follow the approach of Chen et al. [4]. In the radius » they employ Chebyshev
Gauss—Radau collocation nodes given by

1 2nj
VJZE(1+C052N11)7 jZO,...7Nr-

The center » = 0 is avoided and hence no extra pole condition is required. The corresponding trans-
formation matrix 7 now results in

2njk
T= i k=0,...,N,.
<COS2M+1>’ J’ ) )
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The derivatives in » can be constructed in the same way as in Section 3. The derivatives in 6 are obtained
by Fourier collocation [3]. The collocation nodes are equidistant, i.e.,

2nj
0= =0, .. Ny—1.
TNy / ‘

The derivative matrix is explicitly given by

(~1) cotbin k2 j,

(DN())kj = { 0 k :]

Partial derivatives are derived by tensor product representation. In our applications we choose

N, =N, N,=2N.

N—

We performed numerical simulations for the examples (4) and (5). The errors in the discrete L2- and L>-
norms were calculated. The boundary curve is once more given by (11) with £ = 1,2, 3. Here we observe
that also for increasing £ we obtain reasonable distributions of collocation nodes (see Figs. 6 and 7 for
k=2,3and N = 16). Clearly, due to the high oscillation of the solution we obtain less favorable results for
example (4) (see Table 6). Here the mapping of Gordon and Hall yields much better results. The difference
between polar coordinates and our mapping technique becomes more striking for example (5) (see Table 7).
For N = 32 we always obtain machine accuracy with an error of about 10~'%. For increasing complexity of
the domain (k > 3) we recommend a decomposition of the domain so that on each subdomain the proposed
mapping technique can be employed.

08 1 1 1 1 1 1 1
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 6. Collocation nodes with polar coordinates (k = 2).
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Fig. 7. Collocation nodes with polar coordinates (k = 3).
Table 6
Numerical results for example (4) with Chen’s polar coordinates
N k=1 k=2 k=3
E2 E% Ez Erx; EZ E’x)
8 1.91 x 10° 2.82 x 10° 2.58 x 10° 4.99 x 10° 1.14 x 10° 2.34 x 10°
16 5.81 x 1072 1.46 x 107! 3.09 x 107! 5.93 x 107! 4.29 x 107! 1.43 x 10°
24 2.58x 1073 3.65x 1073 2.02x 1072 3.79 x 1072 1.87 x 107! 5.94 x 107!
32 1.28 x 1073 1.77 x 1073 2.11x1073 2,69 x 1073 4.20x 1072 1.24 x 107!
48 1.66 x 107! 2.41 x 107" 1.34x10°¢ 1.66 x 107° 1.03x 1073 345x 1073
62 3.21 x 10712 1.58 x 107" 4.51 x 10710 542 x 10710 1.42x 107* 1.80 x 1074
Table 7
Numerical results for example (5) with Chen’s polar coordinates
N k=1 k=2 k=3
Ez EOQ Ez Eoo Ez Eoo
8 1.10x 1072 1.40 x 1072 1.31 x 107! 2.31 x 107! 1.91 x 107! 4.06 x 107!
16 2.38x 1077 3.64 x 1077 1.07 x 1073 1.65x 1073 1.63 x 1072 4.15x 1072
24 2.97 x 1071 3.39x 1071 242 x10°° 3.00 x 1076 1.22x 1073 2.16 x 1073
32 2.48 x 10712 8.23 x 10712 3.59 x 10~ 4.15x107° 1.65x 10°¢ 1.06 x 1073
48 4.79 x 10712 2.37x 10711 2,10 x 10712 9.46 x 10712 2.00 x 107° 2.70 x 10~°
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6. Improved polar coordinate approach

Here we introduce polar coordinates (r,0) and the transformed equation on the unit disc D reads as
follows:

Py + 1, + ugy = r*f . (15)

For stability reasons the original equation was multiplied by 7*. Usually one considers r € [0,1] and
0 € [0,2n] and one employs Chebyshev collocation in r and Fourier collocation in 6. Here we allow
re[—1,1] and 0 € [0,2x]. In » we employ the standard Chebyshev Gauss—Lobatto nodes given by

in .
7",':C()Sﬁr7 l:O,...,N,-.

In order to avoid an overlap of collocation nodes the discrete angles 0; are given by

C(E =0, N—1,
0—{ t L (j-N)E j=N,...2N-1. (16)

For given N (N even) we choose
N, =N-—-1, Ny=2N.

Since N, = N — 1 is odd the center » = 0 is not a collocation point. By this choice we avoid some extra
pole condition. In Figs. 8 and 9 we plotted the collocation nodes of Chen et al. and our method for N = 16.
Clearly, the nodes of Chen are clustering near the center whereas our nodes keep far away from » = 0. In
the numerical simulations this leads to an improved condition number. Let us first describe the spectral
collocation scheme in r. First one has to introduce the transformation matrices from physical space to
coefficient space. Since we employ a Chebyshev expansion we obtain the following matrix:

T = cos (km>, i,k=0,...,N,.
N,

r

_ Further we need the differentiation matrix in the Chebyshev coefficient space which is explicitly given by
D = (d;;) € RV Now we are once more able to write the spectral derivative matrices D1 and D2 for
the first and second derivatives. They are explicitly given by

D1 =T7DT™', D2=TDT".

The spectral operators can be efficiently evaluated by fast Fourier transforms (FFTs) in O(N, logN,)
arithmetic operations. The derivatives in 0 are derived in a similar fashion. First we introduce the (real)
Fourier basis

sin(k + 1)x k=0,....N—2,
¢p(x) =< cosNx +sinNx k=N -1,
cos(k—N)x  k=N,....,2N — 1.

)

The corresponding transformation matrix in Fourier space is now defined as follows:

Ty=(¢:(0)), Jjk=0,....,2N — 1,
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Fig. 8. Collocation nodes of Chen et al.

where the nodes 0; are given in (4). The second derivative in coefficient space is

7N_1a

B —diag((k+1)*) k=0,.
0 k= 2N — 1.

—diag((k — N)?) N,..
Now the second derivative in Fourier space reads as

D2, = ,DT, "
The first derivative can be constructed as follows. We first evaluate

(k+1)cos(k +1)0; k=0,....N=2, j=0,...,2N — 1,
6.(0,) = N cos jn k=N-1, j=0,...,N—1,
W77} =N cos jn k=N-1, j=N,...,2N — 1,

—(k—N)sin(k—N)0; k=N,....,2N—-1, j=0,...,2N -1

and then obtain with Dy = (¢, (0,))
D1y = DyT, "

By tensor product representation it is once more an easy task to write the spectral partial derivatives in
2D. First we compared the condition numbers of our approach and the approach of Chen et al. [4]. They
are numerically evaluated in the spectral norm. From the numerical results in Table 8 we observe that the
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Fig. 9. Collocation nodes with our method.

Table 8

Condition numbers
N Present method Chen et al.

8 3.79 x 107 1.82 x 10*

16 1.08 x 10* 3.70 x 10°
24 7.37 x 10* 2.17 x 10°
32 2.82 x 10° 7.62 x 107
48 1.81 x 10° 4.45 x 107
62 5.76 x 10° 1.35x 108

condition number of the spectral operator introduced by Chen is about 2-3 digits larger than for the
present method. Hence for time-dependent problems our approach leads to less restrictive time limitations.
However, we consider stationary problems and are interested in the global accuracy of the method. For this
purpose we calculated the discrete L>-errors |lu — uy||,. We once more consider the two examples (4) and (5)
introduced in [4,5,16]. From the Tables 9 and 10 we observe the high spectral accuracy for both methods.
Due to the large condition number of Chen’s method the accuracy is somewhat disturbed for increasing N.
For example (5) with N = 32 there is a loss of 3 digits in accuracy compared to our method. The numerical
results substantiate the usefulness of our new approach.

Once more we consider the Poisson problem on domains with smooth boundaries I" which are pa-
rameterized in the arc length 6. The mapping is given by

(;) :(d(e)r+b(e))(§frf((g))>, ~1<r<1, 0<0 < 2m, (17)
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Table 9
Numerical results for example (4)
N Present method Chen et al.
8 1.73 x 10° 2.33 x 10°
16 3.67x 1073 3.42x1073
24 1.03 x 1077 6.00 x 10~°
32 2.04 %1071 1.75x 1071
Table 10
Numerical results for example (5)
N Present method Chen et al.
8 2.28 x 107¢ 2.86 x 107¢
16 1.03x 10~ 1.78 x 10713
24 6.62 x 10714 2.47 x 1071
32 7.02 x 10714 2.34 x 1071
where
r2(0) — r1(0) r2(0) + r1(0)

Here 7,7, denote the distances of the boundary curve from the center » = 0. We have to transform the

Laplace operator into the polar coordinates. For this purpose we introduce the following abbreviations:
d=4d(0), c=cos(f), s=sin(h).

The partial derivatives are now transformed as follows:

(de)*  2esd>  (ds)* 0 0 U Uy

dexg  dsxg+dcyy  dsyy  (dc), (ds), | | tx Urg
x2 2x0¥ Vi Xoo Yoo Uy | = | oo |- (18)
0 0 0 de ds Uy U
0 0 0 X Vo Uy, Uy

By inverting the above matrix and taking the sum of the first and third row we exactly obtain the coeffi-
cients of the transformed Laplace operator in polar coordinates. Now we are able to apply spectral col-
location schemes in the same manner as before. We consider boundary curves with » = 0 and d given by
(11) and (12). For £ = 0 we reobtain the unit disc and for £ = 1,2, 3 increasing mode numbers of the
boundary curve are considered. In the Figs. 10-12 we plotted the distribution of collocation nodes for
k=1,2,3and N = 16. We performed numerical simulations for the examples (4) and (5). The errors E,, E,
in the discrete L?- and L>*-norms were calculated. For example (5), k = 1 we obtain for N = 32 the machine
accuracy with an error of about 107 (see Table 12). Clearly, due to the high oscillation of the solution we
obtain less favorable results for example (4) (see Table 11). For increasing complexity of the problem
(solution or domain) we recommend a decomposition of the domain so that on each subdomain the
proposed mapping technique can be employed.

Finally we compared our approach with the existing literature on diameter expansions. Also Fornberg
[6,7] recommends the expansion over diameters as a means of avoiding the serious clustering at the origin.
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Fig. 10. Collocation nodes on complex geometry (k = 1).

Fig. 11. Collocation nodes on complex geometry (k = 2).
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Fig. 12. Collocation nodes on complex geometry (k = 3).
Table 11
Numerical results for example (4) with the diameter approach
N k=1 k=2 k=3
Ez Eoc E2 E{)Q E2 an
8 1.40 x 10° 3.57 x 10° 7.62 x 107! 2.70 x 10° 1.92 x 10° 6.31 x 10°
16 1.53x 107! 9.28 x 107! 2.39 x 107! 1.43 x 10° 1.09 x 10° 5.43 x 10°
24 3.04 x 1073 2.15x 1072 1.34 x 1072 1.12 x 107! 4.13 x 107! 3.32x 10°
32 1.52x 1073 1.28 x 107* 7.39 x 107* 7.13x 1073 1.05x 107! 1.10 x 10°
48 2.65x 1071 3.02x 10710 1.53 x 1077 2.31x10°¢ 5.09 x 1073 4.29 x 1072
62 3.42x 1071 1.00 x 10712 3.70 x 10710 3.28 x 107 1.71 x 107* 1.60 x 1073
Table 12
Numerical results for example (5) with the diameter approach
N k=1 k=2 k=3
E, E. E, E E, E.
8 4.18x 1073 1.63 x 1072 4.86 x 1072 1.46 x 107! 5.57 x 107! 2.55 % 10°
16 5.48 x 1077 2.92 x 10°¢ 6.68 x 107* 2.69 x 1073 3.85x 1072 1.77 x 107!
24 1.82x 1071 9.84 x 10711 1.19 x 10°¢ 6.17x107¢ 591 x 107* 3.39x 1073
32 6.70 x 10714 2.20 x 10713 1.60 x 10~° 9.52x 10~ 5.13x 1073 3.89 x 107*

48 9.74 x 10~ 3.86 x 1071 1.01 x 1071 3.63x 10713 7.67x107° 6.91 x 1078




W. Heinrichs | Journal of Computational Physics 199 (2004) 66-86 85

An efficient implementation was presented by Shen [22] and in MATLAB by Trefethen [24]. Fornberg first
writes the complete collocation system where grid values at symmetric points occur twice. This is due to the
fact that the mapping form (r, 0) to (x,y) is 2-to-1. Then the redundant equations are eliminated by using
the symmetry condition

u(r,0) =u(—r,0 + n).

We do not need such an elimination process since we avoid a double gridding by shifting the 6-grid for
0 > m. If the same collocation grids are used then Fornbergs and our approach should yield the same
spectral approximation. But in fact, Fornberg uses the double amount of collocation nodes in r, i.c.,
N, =2N — 1 and only the half amount of nodes in 0, i.e., Ng = N. We think that our grid is more ap-
propriate for the diameter approach since the numbers of collocation conditions are chosen in accordance
to the polynomial degrees in » and 6. Due to the substantial regularity of the solution it is not reasonable to
use about 2N conditions of collocation for a polynomial of degree N in ». On the other hand, we allow a
better resolution in 0 with twice the amount of collocation nodes. We think that Fornbergs grid is well
suited for the radius approach but not for the diameter approach. Torres and Coutsias [23] use the diameter
approach for the spectral tau scheme with parity-adjusted basis functions. By converting the Chebyshev
operator into an equivalent (well conditioned) tridiagonal form, no additional pole condition or other
regularization is required for the Poisson problem. On the other hand, the Helmholtz operator poses se-
rious conditioning problems. A direct compare to our collocation scheme is not possible since the tau
method with parity-adjusted basis functions yields a very different approach. Huang et al. [17] show that
imposition of one pole condition (i.e. vanishing at » = 0 to some fixed, low order only regardless of Fourier
mode number) suffices for regularity of solutions of the Poisson problem. A further discussion of pole
conditions can also be found in Boyd [2]. We do not claim the superiority of the odd grid for the diameter
approach. With suitable pole conditions and/or proper care for parity the choice of even or odd grids makes
little difference.

7. Conclusion

Poisson problems on the unit disc are solved by spectral collocation schemes based on the mapping of
Gordon and Hall. The problems of polar coordinate approaches with a singularity in » = 0 are avoided and
the well known high spectral accuracy is maintained. For a comparison we present numerical results which
show the good performance of our new approach. Furthermore we present a diameter approach where the
collocation nodes are not clustering near the center. Hence the condition number of the spectral operator is
improved. Finally it is also shown that the methods can be successfully applied to more complex domains.

References

[1] C. Bernardi, A. Karageorghis, Spectral method in a part of a disc, Numer. Math. 73 (1996) 265-289.

[2] J.P. Boyd, Chebyshev & Fourier Spectral Methods, second ed., Dover, New York, 2001.

[3] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational
Physics, Springer-Verlag, Berlin, 1989.

[4] H. Chen, Y.S. Su, D. Shizgal, A direct spectral collocation Poisson solver in polar and cylindrical coordinates, J. Comp. Phys. 160
(2000) 453-463.

[5] H. Eisen, W. Heinrichs, K. Witsch, Spectral methods and polar coordinate singularities, J. Comp. Phys. 96 (1991) 241-257.

[6] B. Fornberg, D.M. Sloan, A review of pseudospectral methods for solving partial differential equations, Acta Numerica 1994
(1994) 203-267.

[7] B. Fornberg, A pseudospectral approach for polar and spherical geometries, SIAM J. Sci. Comput. 16 (1995) 1071-1081.

[8] W.J. Gordon, C.A. Hall, Construction of curvilinear co-ordinate systems and their applications to mesh generation, Int. J.
Numer. Meth. Eng. 7 (1973) 461-477.



86 W. Heinrichs | Journal of Computational Physics 199 (2004) 66-86

[9] W.J. Gordon, C.A. Hall, Transfinite element methods: blending-function interpolation over arbitrary curved element domains,

Numer. Math. 21 (1973) 109-129.

[10] D. Gottlieb, S.A. Orszag, Numerical Analysis of spectral methods: theory and applications. CBMS-NSF Regional Conference
Series in Applied Mathematics No. 26, SIAM, Philadelphia, 1977.

[11] H. Haschke, W. Heinrichs, Splitting techniques with staggered grids for the Navier—Stokes equations in the 2D case, J. Comp.
Phys. 168 (2001) 131-154.

[12] W. Heinrichs, Splitting techniques for the pseudospectral approximation of the unsteady Stokes equations, SIAM J. Numer. Anal.
30 (1993) 19-39.

[13] W. Heinrichs, Splitting techniques for the unsteady Stokes equations, SIAM J. Numer. Anal. 35 (1998) 1646-1662.

[14] W. Heinrichs, Spectral collocation on triangular elements, J. Comp. Phys. 145 (1998) 743-757.

[15] W. Heinrichs, B. Loch, Spectral schemes on triangular elements, J. Comp. Phys. 173 (2001) 279-301.

[16] W. Huang, D.M. Sloan, Pole condition for singular problems, J. Comp. Phys. 107 (1993) 254-261.

[17] W. Huang, H. Ma, W. Sun, Convergence analysis of pseudospectral methods for solving partial differential equations in polar and
cylindrical geometries, Preprint 2002.

[18] A. Karageorghis, Conforming spectral methods for Poisson problems in cuboidal domains, J. Sci. Comput. 9 (1994) 341-349.

[19] T. Matsushima, P.S. Marcus, A spectral method for polar coordinates, J. Comp. Phys. 120 (1995) 365-374.

[20] S.A. Orszag, Spectral methods for problems in complex geometries, J. Comp. Phys. 37 (1980) 70-92.

[21] J. Shen, Efficient spectral-Galerkin methods III: polar and cylindrical geometries, SIAM J. Sci. Comput. 18 (1997) 1583-1604.

[22] J. Shen, A new fast Chebyshev—Fourier algorithm for Poisson-type equations in polar geometries, Appl. Numer. Math. 33 (2000)
183-190.

[23] D.J. Torres, E.A. Coutsias, Pseudospectral solution of the 2D Navier—Stokes equations in a disc, SIAM J. Sci. Comput. 21 (1999)
378-403.

[24] L.N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000.



	Spectral collocation schemes on the unit disc
	Introduction
	The poisson problem and mapping
	Spectral collocation
	Numerical results
	Complex geometry
	Improved polar coordinate approach
	Conclusion
	References


